03.五年AI狂飙 如果说上面平铺直叙的历史,能让我们遵循清晰的脉络看到这家GPU巨头的成长历程。那在这个章节内,我们则能看到这家炙手可热的芯片企业在近五年活力全开。 回顾前二十五年(截止)的发展,英伟达除了一边研发外,还一边打官司,公司也在这期间收购了一大堆企业。例如在2002 年收购了 Exluna、2003年收购了MediaQ、2006年收购了Hybrid Graphics、2008年收购了Ageia、2011年收购Icera。 在次期间,公司也因应市场的发展做调整。如在2011年推出手机芯片。公司自 2014 年以来也将业务多元化,专注于三个市场:游戏、汽车电子和移动设备。再到后来放弃手机芯片市场,拥抱矿机市场,放弃矿机市场,英伟达的每一次决定都没有拖泥带水。 进入最近五年,英伟达面向AI市场发起了总攻。其做得头一件事就是在2019年宣布将打造领先互联技术和产品的Mellanox收归麾下。进入2020年,英伟达更是宣布了将Arm收入囊中的雄伟计划,但这最终在多方反对下胎死腹中。 现在回头看,英伟达这单收购的意图非常明显。从公司当前的销售模式看来(销售DGX和HGX),只要在设计中放入更多的自己的芯片,就能获取更多的收益。参考下图英伟达DGX H100的成本跟普通服务器的成本对比。 回到英伟达产品本身,在2020 年 5 月,他们正式宣布了其 Ampere GPU 微架构和 Nvidia A100 GPU 加速器,打响了公司在AI市场的第一**。2022年三月,英伟达又带来了其首款基于Hopper架构的GPU NVIDIA H100,吹响了公司在AI市场进攻的号角。事实证明,这两款产品也都成为了AI市场的硬通货。 以H100为例,据外媒CNBC报道,随着对训练和部署人工智能软件所需芯片需求的飙升,英伟达的最先进的显卡在eBay上的售价超过 40,000 美元。就连针对中国市场特别开发的A800和H800都价格一路高涨,市场供不应求。 但英伟达不满足于此,这也正是他们在2021年发布了为AI而生的Grace CPU,并在2022年升级,推出拥有了144 个高性能核心,每秒 1 TB 内存,可将服务器芯片性能和能效提升一倍的Grace CPU Superchip。除此以外,英伟达还推出了专为大规模 人工智能和高性能计算(HPC) 应用而设计 Grace Hopper Superchip。需要强调的是,英伟达后两款通过NVLink-C2C连接到一起的Superchip的设计思路有望成为这家GPU巨头增加计算性能最行之有效的快捷手段。 至于收购mellanox所打造的各种switch和DPU,以及各种光学器件,也成为了英伟达武器库中不可或缺的角色。在这些产品的支持下,英伟达也打造出了DGX、HGX等产品,在日前发布的DGX GH200更是再次刷新了大家对其上限的看法。据介绍,这个全新的AI超算系统搭载了256个Grace Hopper Superchip,新的互联方式让产品像一个巨型GPU运行,提供1EFLOPS的性能和144TB的共享内存,这比上一代DGX A100的内存多出了近500倍。 为了更好地帮助大家拥抱这个AI时代,英伟达还推出了包括DGX Cloud在内的各种云服务,同过云端提供DGX AI运算资源,方便企业使用进行模型训练与开发。 04.写在最后 今年年初接受CNBC记者采访的时候,黄仁勋曾被问到,英伟达的崛起是运气还是先见之明?针对这个问题,黄仁勋回应道:“我们只是相信总有一天会发生新的事情,其余的一切都需要一些偶然性”,“这不是先见之明,但远见是加速计算”黄仁勋接着说。 在日前的台北电脑展演讲中,黄仁勋直言:“CPU扩张的时代已经结束,加速计算和人工智能正在重塑计算机,随着AI应用对计算能力的需求不断扩大,GPU才是未来的主角。” 瑞银银行也估计,在未来一两年内,人工智能将使对称为图形处理单元 ( GPU) 的专业芯片的需求增加 100 亿至 150 亿美元。CFRA Research 分析师 Angelo Zino 则表示:“我们认为 Nvidia 是这个星球上最重要的公司,这个时代正在迅速转向一个将被更强大的 AI 能力所强调的时代。” 无论如何,英伟达和黄仁勋都在一路前行。 正如黄仁勋日前在台大毕业演讲中勉励学生说道:“不管是为了食物而奔跑,或不被他人当做食物而奔跑。你往往无法知道自己正处于哪一种情况。但无论如何,都要保持奔跑。”“然而,战略性的撤退、牺牲、决定放弃什么是成功的核心,非常关键的核心。”黄仁勋接着说。 |