|
顺势指标CCICCI中文译名为:随顺市势指标。它属于超买超卖指标中较特殊的一种。波动于广向正值无限大和微向负值无限小之间。本指标专门用以测量股价是否已超出常态分布范围
计算公式 CCI(N日)=(TP-MA)÷Std÷0.015
其中,TP=(最高价+最低价+收盘价)÷3
MA=近N日收盘价的累计之和÷N
Std=近N日数据的标准差 - # Load the necessary packages and modules
- import pandas as pd
- import pandas.io.data as web
- import matplotlib.pyplot as plt
- # Commodity Channel Index
- def CCI(data, ndays):
- TP = (data['High'] + data['Low'] + data['Close']) / 3
- CCI = pd.Series((TP - pd.rolling_mean(TP, ndays)) / (0.015 * pd.rolling_std(TP, ndays)),
- name = 'CCI')
- data = data.join(CCI)
- return data
- # Retrieve the Nifty data from Yahoo finance:
- data = web.DataReader('^NSEI',data_source='yahoo',start='1/1/2014', end='1/1/2016')
- data = pd.DataFrame(data)
- # Compute the Commodity Channel Index(CCI) for NIFTY based on the 20-day Moving average
- n = 20
- NIFTY_CCI = CCI(data, n)
- CCI = NIFTY_CCI['CCI']
- # Plotting the Price Series chart and the Commodity Channel index below
- fig = plt.figure(figsize=(7,5))
- ax = fig.add_subplot(2, 1, 1)
- ax.set_xticklabels([])
- plt.plot(data['Close'],lw=1)
- plt.title('NSE Price Chart')
- plt.ylabel('Close Price')
- plt.grid(True)
- bx = fig.add_subplot(2, 1, 2)
- plt.plot(CCI,'k',lw=0.75,linestyle='-',label='CCI')
- plt.legend(loc=2,prop={'size':9.5})
- plt.ylabel('CCI values')
- plt.grid(True)
- plt.setp(plt.gca().get_xticklabels(), rotation=30)
复制代码
|
|