|
本策略根据EG两步法(1.序列同阶单整2.OLS残差平稳)判断序列具有协整关系之后(若无协整关系则全平仓位不进行操作),通过计算两个真实价格序列回归残差的0.9个标准差上下轨,并在价差突破上轨的时候做空价差,价差突破下轨的时候做多价差,并在回归至标准差水平内的时候平仓
回测数据为:SHFE.rb1801和SHFE.rb1805的1min数据
回测时间为:2017-09-25 08:00:00到2017-10-01 15:00:00
- # coding=utf-8
- from __future__ import print_function, absolute_import, unicode_literals
- import numpy as np
- from gm.api import *
- try:
- import statsmodels.tsa.stattools as ts
- except:
- print('请安装statsmodels库')
- # 协整检验的函数
- def cointegration_test(series01, series02):
- urt_rb1801 = ts.adfuller(np.array(series01), 1)[1]
- urt_rb1805 = ts.adfuller(np.array(series01), 1)[1]
- # 同时平稳或不平稳则差分再次检验
- if (urt_rb1801 > 0.1 and urt_rb1805 > 0.1) or (urt_rb1801 < 0.1 and urt_rb1805 < 0.1):
- urt_diff_rb1801 = ts.adfuller(np.diff(np.array(series01)), 1)[1]
- urt_diff_rb1805 = ts.adfuller(np.diff(np.array(series01), 1))[1]
- # 同时差分平稳进行OLS回归的残差平稳检验
- if urt_diff_rb1801 < 0.1 and urt_diff_rb1805 < 0.1:
- matrix = np.vstack([series02, np.ones(len(series02))]).T
- beta, c = np.linalg.lstsq(matrix, series01)[0]
- resid = series01 - beta * series02 - c
- if ts.adfuller(np.array(resid), 1)[1] > 0.1:
- result = 0.0
- else:
- result = 1.0
- return beta, c, resid, result
- else:
- result = 0.0
- return 0.0, 0.0, 0.0, result
- else:
- result = 0.0
- return 0.0, 0.0, 0.0, result
- def init(context):
- context.goods = ['SHFE.rb1801', 'SHFE.rb1805']
- # 订阅品种
- subscribe(symbols=context.goods, frequency='60s', count=801, wait_group=True)
- def on_bar(context, bars):
- # 获取过去800个60s的收盘价数据
- close_01 = context.data(symbol=context.goods[0], frequency='60s', count=801, fields='close')['close'].values
- close_02 = context.data(symbol=context.goods[1], frequency='60s', count=801, fields='close')['close'].values
- # 展示两个价格序列的协整检验的结果
- beta, c, resid, result = cointegration_test(close_01, close_02)
- # 如果返回协整检验不通过的结果则全平仓位等待
- if not result:
- print('协整检验不通过,全平所有仓位')
- order_close_all()
- return
- # 计算残差的标准差上下轨
- mean = np.mean(resid)
- up = mean + 0.9 * np.std(resid)
- down = mean - 0.9 * np.std(resid)
- # 计算新残差
- resid_new = close_01[-1] - beta * close_02[-1] - c
- # 获取rb1801的多空仓位
- position_01_long = context.account().position(symbol=context.goods[0], side=PositionSide_Long)
- position_01_short = context.account().position(symbol=context.goods[0], side=PositionSide_Short)
- if not position_01_long and not position_01_short:
- # 上穿上轨时做空新残差
- if resid_new > up:
- order_target_volume(symbol=context.goods[0], volume=1, order_type=OrderType_Market,
- position_side=PositionSide_Short)
- print(context.goods[0] + '以市价单开空仓1手')
- order_target_volume(symbol=context.goods[1], volume=1, order_type=OrderType_Market,
- position_side=PositionSide_Long)
- print(context.goods[1] + '以市价单开多仓1手')
- # 下穿下轨时做多新残差
- if resid_new < down:
- order_target_volume(symbol=context.goods[0], volume=1, order_type=OrderType_Market,
- position_side=PositionSide_Long)
- print(context.goods[0], '以市价单开多仓1手')
- order_target_volume(symbol=context.goods[1], volume=1, order_type=OrderType_Market,
- position_side=PositionSide_Short)
- print(context.goods[1], '以市价单开空仓1手')
- # 新残差回归时平仓
- elif position_01_short:
- if resid_new <= up:
- order_close_all()
- print('价格回归,平掉所有仓位')
- # 突破下轨反向开仓
- if resid_new < down:
- order_target_volume(symbol=context.goods[0], volume=1, order_type=OrderType_Market,
- position_side=PositionSide_Long)
- print(context.goods[0], '以市价单开多仓1手')
- order_target_volume(symbol=context.goods[1], volume=1, order_type=OrderType_Market,
- position_side=PositionSide_Short)
- print(context.goods[1], '以市价单开空仓1手')
- elif position_01_long:
- if resid_new >= down:
- order_close_all()
- print('价格回归,平所有仓位')
- # 突破上轨反向开仓
- if resid_new > up:
- order_target_volume(symbol=context.goods[0], volume=1, order_type=OrderType_Market,
- position_side=PositionSide_Short)
- print(context.goods[0], '以市价单开空仓1手')
- order_target_volume(symbol=context.goods[1], volume=1, order_type=OrderType_Market,
- position_side=PositionSide_Long)
- print(context.goods[1], '以市价单开多仓1手')
- if __name__ == '__main__':
- '''
- strategy_id策略ID,由系统生成
- filename文件名,请与本文件名保持一致
- mode实时模式:MODE_LIVE回测模式:MODE_BACKTEST
- token绑定计算机的ID,可在系统设置-密钥管理中生成
- backtest_start_time回测开始时间
- backtest_end_time回测结束时间
- backtest_adjust股票复权方式不复权:ADJUST_NONE前复权:ADJUST_PREV后复权:ADJUST_POST
- backtest_initial_cash回测初始资金
- backtest_commission_ratio回测佣金比例
- backtest_slippage_ratio回测滑点比例
- '''
- run(strategy_id='strategy_id',
- filename='main.py',
- mode=MODE_BACKTEST,
- token='token_id',
- backtest_start_time='2017-09-25 08:00:00',
- backtest_end_time='2017-10-01 16:00:00',
- backtest_adjust=ADJUST_PREV,
- backtest_initial_cash=500000,
- backtest_commission_ratio=0.0001,
- backtest_slippage_ratio=0.0001)
复制代码
|
|