|
本策略通过计算CZCE.FG801和SHFE.rb1801的ATR.唐奇安通道和MA线,并:上穿唐奇安通道且短MA在长MA上方则开多仓,下穿唐奇安通道且短MA在长MA下方则开空仓
若有 多/空 仓位则分别:
价格 跌/涨 破唐奇安平仓通道 上/下 轨则全平仓位,否则
根据 跌/涨 破持仓均价 -/+ x(x=0.5,1,1.5,2)倍ATR把仓位
回测数据为:CZCE.FG801和SHFE.rb1801的1min数据
回测时间为:2017-09-15 09:15:00到2017-10-01 15:00:00
- # coding=utf-8
- from __future__ import print_function, absolute_import, unicode_literals
- import numpy as np
- import pandas as pd
- try:
- import talib
- except:
- print('请安装TA-Lib库')
- from gm.api import *
- def init(context):
- # context.parameter分别为唐奇安开仓通道.唐奇安平仓通道.短ma.长ma.ATR的参数
- context.parameter = [55, 20, 10, 60, 20]
- context.tar = context.parameter[4]
- # context.goods交易的品种
- context.goods = ['CZCE.FG801', 'SHFE.rb1801']
- # context.ratio交易最大资金比率
- context.ratio = 0.8
- # 订阅context.goods里面的品种, bar频率为1min
- subscribe(symbols=context.goods, frequency='60s', count=101)
- # 止损的比例区间
- def on_bar(context, bars):
- bar = bars[0]
- symbol = bar['symbol']
- recent_data = context.data(symbol=symbol, frequency='60s', count=101, fields='close,high,low')
- close = recent_data['close'].values[-1]
- # 计算ATR
- atr = talib.ATR(recent_data['high'].values, recent_data['low'].values, recent_data['close'].values,
- timeperiod=context.tar)[-1]
- # 计算唐奇安开仓和平仓通道
- context.don_open = context.parameter[0] + 1
- upper_band = talib.MAX(recent_data['close'].values[:-1], timeperiod=context.don_open)[-1]
- context.don_close = context.parameter[1] + 1
- lower_band = talib.MIN(recent_data['close'].values[:-1], timeperiod=context.don_close)[-1]
- # 计算开仓的资金比例
- percent = context.ratio / float(len(context.goods))
- # 若没有仓位则开仓
- position_long = context.account().position(symbol=symbol, side=PositionSide_Long)
- position_short = context.account().position(symbol=symbol, side=PositionSide_Short)
- if not position_long and not position_short:
- # 计算长短ma线.DIF
- ma_short = talib.MA(recent_data['close'].values, timeperiod=(context.parameter[2] + 1))[-1]
- ma_long = talib.MA(recent_data['close'].values, timeperiod=(context.parameter[3] + 1))[-1]
- dif = ma_short - ma_long
- # 获取当前价格
- # 上穿唐奇安通道且短ma在长ma上方则开多仓
- if close > upper_band and (dif > 0):
- order_target_percent(symbol=symbol, percent=percent, order_type=OrderType_Market,
- position_side=PositionSide_Long)
- print(symbol, '市价单开多仓到比例: ', percent)
- # 下穿唐奇安通道且短ma在长ma下方则开空仓
- if close < lower_band and (dif < 0):
- order_target_percent(symbol=symbol, percent=percent, order_type=OrderType_Market,
- position_side=PositionSide_Short)
- print(symbol, '市价单开空仓到比例: ', percent)
- elif position_long:
- # 价格跌破唐奇安平仓通道全平仓位止损
- if close < lower_band:
- order_close_all()
- print(symbol, '市价单全平仓位')
- else:
- # 获取持仓均价
- vwap = position_long['vwap']
- # 获取持仓的资金
- money = position_long['cost']
- # 获取平仓的区间
- band = vwap - np.array([200, 2, 1.5, 1, 0.5, -100]) * atr
- grid_percent = float(pd.cut([close], band, labels=[0, 0.25, 0.5, 0.75, 1])[0]) * percent
- # 选择现有百分比和区间百分比中较小的值(避免开仓)
- target_percent = np.minimum(money / context.account().cash['nav'], grid_percent)
- if target_percent != 1.0:
- print(symbol, '市价单平多仓到比例: ', target_percent)
- order_target_percent(symbol=symbol, percent=target_percent, order_type=OrderType_Market,
- position_side=PositionSide_Long)
- elif position_short:
- # 价格涨破唐奇安平仓通道或价格涨破持仓均价加两倍ATR平空仓
- if close > upper_band:
- order_close_all()
- print(symbol, '市价单全平仓位')
- else:
- # 获取持仓均价
- vwap = position_short['vwap']
- # 获取持仓的资金
- money = position_short['cost']
- # 获取平仓的区间
- band = vwap + np.array([-100, 0.5, 1, 1.5, 2, 200]) * atr
- grid_percent = float(pd.cut([close], band, labels=[1, 0.75, 0.5, 0.25, 0])[0]) * percent
- # 选择现有百分比和区间百分比中较小的值(避免开仓)
- target_percent = np.minimum(money / context.account().cash['nav'], grid_percent)
- if target_percent != 1.0:
- order_target_percent(symbol=symbol, percent=target_percent, order_type=OrderType_Market,
- position_side=PositionSide_Short)
- print(symbol, '市价单平空仓到比例: ', target_percent)
- if __name__ == '__main__':
- '''
- strategy_id策略ID,由系统生成
- filename文件名,请与本文件名保持一致
- mode实时模式:MODE_LIVE回测模式:MODE_BACKTEST
- token绑定计算机的ID,可在系统设置-密钥管理中生成
- backtest_start_time回测开始时间
- backtest_end_time回测结束时间
- backtest_adjust股票复权方式不复权:ADJUST_NONE前复权:ADJUST_PREV后复权:ADJUST_POST
- backtest_initial_cash回测初始资金
- backtest_commission_ratio回测佣金比例
- backtest_slippage_ratio回测滑点比例
- '''
- run(strategy_id='strategy_id',
- filename='main.py',
- mode=MODE_BACKTEST,
- token='token_id',
- backtest_start_time='2017-09-15 09:15:00',
- backtest_end_time='2017-10-01 15:00:00',
- backtest_adjust=ADJUST_PREV,
- backtest_initial_cash=10000000,
- backtest_commission_ratio=0.0001,
- backtest_slippage_ratio=0.0001)
复制代码
|
|